Introducción

Uno de los problemas que más se presenta en matemáticas es el de calcular la solución de una ecuación. En algunas (pocas) ocasiones, esto puede hacerse por métodos analíticos, es decir, se puede “despejar” la incógnita para encontrar el o los valores que resuelven la ecuación. En la gran mayoría de las ocasiones con algún interés práctico esto no es posible y es necesario recurrir a un método numérico que, con la ayuda de un ordenador, nos permita calcular un valor aproximado de la solución.

Los métodos de aproximación de raices de ecuaciones necesitan conocer, o bien un intervalo que contenga sólo una raíz, o bien un punto inicial que esté suficientemente cerca de ella. Por tanto, como paso previo a la aplicación de un método de aproximación, es necesario localizar la raíz, es decir encontrar un intervalo que la contenga y separar la raíz, es decir encontrar un intervalo que sólo contenga dicha raíz. Esto se hace por métodos analíticos, gráficos y, en algunos casos, empíricos.

Los siguientes métodos son para calcular las raíces reales de una ecuación dada por f(x)=0f(x) = 0 donde se exige al menos que la función ff sea una función continua para garantizar la existencia de solución. La mayoría de métodos se obtienen de interpolar la función, generalmente mediante un polinomio de primer grado (interpolación lineal) y después aproximar la solución mediante alguna de las raíces del polinomio.

Ejemplo grafico

Método de bisección

El algoritmo más simple de búsqueda de raíces es el método de bisección. Requiere un intervalo inicial que contenga alguna raíz de la ecuación (de forma que la función tome en los extremos del mismo valores de distinto signo; véase el teorema de Bolzano). Dicho intervalo inicial se va dividiendo sucesivamente por la mitad (se bisecta) tomándose el intervalo que contiene a la raíz. A pesar de ser un método que siempre converge a una solución, converge muy lentamente.

Ejemplo grafico

Método de Newton

El método de Newton asume que la función f(x)f(x) sea continuamente derivable y que se conoce la derivada de la función. Este método puede no converger si se comienza con un valor muy alejado de la raíz.

Sin embargo, si converge, lo hace mucho más rápido que el método de bisección (usualmente, de manera cuadrática), por eso el número de dígitos correctos se duplica en cada iteración. El método de Newton también es útil porque se generaliza para problemas de dimensiones más altas.

Ejemplo grafico

Método de la Secante

Reemplazando la derivada del método de Newton por un cociente incremental, obtenemos el método de la secante. Este método no requiere el cálculo (ni la existencia) de la derivada, pero el precio que se debe pagar es un orden de convergencia más bajo (aproximadamente 1.6).

Ejemplo grafico

Método de la regla falsa

El método de la regla falsa (o regula falsi) es un método que combina lo mejor del método de bisección y del método de la secante. El método corta el intervalo en dos partes como en el método de bisección, pero a diferencia de éste, lo corta por el valor obtenido aplicando el método de la secante a los extremos del intervalo, no siendo generalmente las partes iguales. El método converge siempre a una raíz de la ecuación, generalmente de forma más rápida que el método de bisección pero más lenta que el método de la secante.

Ejemplo grafico

Método del punto fijo

Finalmente, hay una familia de métodos conocidos como métodos de punto fijo. Estos métodos se basan en obtener a partir de la ecuación f(x)=0f(x) = 0 una ecuación equivalente de la forma g(x)=xg(x) = x cuya solución se convierta en un punto fijo de g e iterando a partir de un valor inicial hasta que se alcance.